GGTr: An Innovative Framework for Accurate and Realistic Human Motion Prediction

نویسندگان

چکیده

Human motion prediction involves forecasting future movements based on past observations, which is a complex task due to the inherent spatial-temporal dynamics of human motion. In this paper, we introduced novel framework, GGTr, adeptly encapsulates these patterns by integrating positional graph convolutional network (GCN) layers, gated recurrent unit (GRU) and transformer layers. The proposed model utilizes an enhanced GCN layer equipped with representation aggregate information from body joints more effectively. To address temporal dependencies, strategically combined GRU enabling capture both local global dependencies across joints. Through extensive experiments conducted Human3.6M CMU-MoCap datasets, demonstrated superior performance our model. Notably, framework shows significant improvements in predicting long-term movements, outperforming state-of-the-art methods substantially.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Innovative Imputation and Classification Approach for Accurate Disease Prediction

Imputation of missing attribute values in medical datasets for extracting hidden knowledge from medical datasets is an interesting research topic of interest which is very challenging. One cannot eliminate missing values in medical records. The reason may be because some tests may not been conducted as they are cost effective, values missed when conducting clinical trials, values may not have b...

متن کامل

A TQM and JIT Integrated Continuous Improvement Model For Organizational Success: An Innovative Framework

Abstract Manufacturing companies must find competitive methods to produce products cheaper, faster and better to continuously satisfy their customers and acquire organizational success. For continuous improvement to be more successful, hybrid programs such as integrated TQM and JIT approaches give better results. As the existing TQM and JIT integrated approaches in literatures are not analogous...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Pursuing motion illusions: A realistic oculomotor framework for Bayesian inference

Accuracy in estimating an object's global motion over time is not only affected by the noise in visual motion information but also by the spatial limitation of the local motion analyzers (aperture problem). Perceptual and oculomotor data demonstrate that during the initial stages of the motion information processing, 1D motion cues related to the object's edges have a dominating influence over ...

متن کامل

an investigation about the appropriate stochastic modeling framework for agricultural insurance pricing

با توجه به اینکه بیمه محصولات کشاورزی در ایران بیشتر جنبه ای حمایتی دارد و خسارات گزارش شده عموما بیش از حق بیمه های دریافت شده است، در این پایان نامه به جهت تعیین قیمت بیمه محصولات کشاورزی (گندم دیم) از فرآیندهای نوفه شلیک به عنوان مدلی مناسب استفاده شده است. بر اساس داده های صندوق بیمه کشاورزی از خسارات اعلام شده در سال زراعی 1388-1389 گندم دیم، در این پایان نامه حق بیمه خالص و ناخالص این محص...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12153305